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In this paper, the chaotic motions of a two-dimensional airfoil are controlled by the
application of the time-delayed continuous feedback method of Pyragas. The airfoil has
cubic pitching sti!ness and linear viscous damping when kept in an incompressible #uid
#ow. Four control strategies are implemented with plunging displacement, plunging
velocity, pitching angle, and pitching velocity as the feedback signals. The control signal is
applied to perturb the airspeed parameter. The response of the system under these four
controls is compared. It is found that the feedback control signal derived from the pitching
variables was found to be more e!ective in controlling the chaotic motion of the airfoil.
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1. INTRODUCTION

It is well known that the panel #utter is one of the classical problems of self-excited systems
in aeroelasticity. Flutter is a dangerous phenomenon which can cause structural failure.
Dowell [1, 2], in his study of chaotic motion of panel #utter has shown that for su$ciently
large in-plane load and moderate to large <, where < is the supersonic airspeed, chaotic
motions occur. The chaotic motion seems to arise as a result of the presence of #ow velocity
and mechanical in-plane load, which govern two distinct types of instability, namely, #utter
(Hopf bifurcation) and Euler buckling (sometimes called static bifurcation). Yang and Zhao
[3] investigated experimentally the limit cycle #utter of an airfoil in incompressible #ow
with non-linear pitching sti!ness. They have shown the existence of double-limit-cycle
#utter and two unstable limit cycles, using the wing model with free play in pitch. Kim and
Lee [4] investigated a #exible airfoil with freeplay non-linearity in pitch in the subsonic #ow
range. They have observed that the limit cycle oscillation and chaotic motion are highly
in#uenced by the pitch-to-plunge frequency ratio. Price and Keleris [5] analyzed the
aeroelastic response of a NACA 0012 airfoil with freedom to move in pitch only, and forced
to oscillate through dynamic stall in subsonic #ow. They have demonstrated that the
aerodynamic non-linearities associated with dynamic stall are su$cient to cause a chaotic
response. Price et al. [6] also considered a two-dimensional airfoil subject to incompressible
#ow with a structural free-play non-linearity in pitch. They have shown that the chaotic
motion can exist for a single structural non-linearity in the pitch motion. Laurenson and
Trn [7] analyzed a missile control surface containing free-play structural non-linearity
exposed to subsonic #ow. They have shown that for increasing dynamic pressure, or #ight
velocity, the system becomes unstable and the response tends to become divergent in nature.
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It has been observed that above some critical dynamic pressure, the system exhibits
divergent #utter motion. Zhao and Yang [8] investigated the chaotic motions of
a two-dimensional airfoil with cubic pitching sti!ness in incompressible #ow. It has been
shown that with steady airforce, an airfoil in incompressible #ow will exhibit chaotic
motions when the airspeed is higher than the linear divergent speed. Raghothama and
Narayanan [9] has considered periodic and chaotic motions of a two-dimensional airfoil
using the incremental harmonic balance method and studied the bifurcations by
a parametric continuation technique.

In recent years, research in the area of non-linear dynamical systems has been focussed
towards control of chaos [10}12]. Chaos control algorithms can be classi"ed into feedback
and non-feedback methods. The non-feedback methods suppress chaotic motion by
converting the system dynamics to a periodic orbit by applying weak periodic perturbations
on some control parameters or variables. The feedback methods control chaos by
stabilizing a desired unstable periodic orbit (UPO) embedded in a chaotic attractor. The
important feedback chaos control methods are the Ott}Grebogi}Yorke (OGY) method
[10] and the continuous time-delayed feedback method of Pyragas [12]. A chaotic attractor
has embedded within it an in"nite number of UPOs. The OGY control method is
essentially based on feedback control that stabilizes the system on a UPO. Pyragas [12]
used continuous time-delayed feedback where a system parameter is perturbed in
proportion to the di!erence between the delayed output signal and the current signal of the
dynamical system.

In this paper, the chaotic motions of a two-dimensional airfoil are controlled by the
application of delayed continuous feedback [12]. The airfoil has cubic pitching sti!ness and
linear viscous damping when kept in an incompressible #uid #ow. Four control strategies
are implemented with (i) plunging displacement, (ii) plunging velocity, (iii) pitching angle,
and (iv) pitching velocity as the feedback signals. The control signal is applied to perturb the
airspeed parameter. The response of the system under these four controls is compared.

2. DETERMINATION OF CONTROL GAIN AND DELAY TIME

The time-delayed feedback control signal of Pyragas is of the form

dp"K (x
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is a dynamical variable of the system which is available for measurement and d is the

delay time. By calculating the dispersion SD2(t)T for various values of d a sequence of
resonance curves, the minima of which give the values of d for UPO stabilization is
obtained. For a given d, the dispersion SD2(t)T is obtained for di!erent values of control
gain K. This gives a "nite interval of K with minimum dispersion for which UPO
stabilization may be possible. Figure 1 shows a schematic of the delayed feedback control.

3. MATHEMATICAL MODEL

Figure 2 shows a two-dimensional airfoil. The equations of motion of the airfoil with two
degrees of freedom in pitch and plunge are given by Yang and Zhao [3]
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Figure 1. Schematic of delayed-feedback control system.

Figure 2. Sketch of the two-dimensional airfoil.
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where h
p

is the plunge displacement, a is the pitching angle, the number of overdots
represents the order of derivative with respect to q, the time, m is the total mass per unit
span, Sa is the mass static moment, Ia is the mass moment of inertia, K

h
is the plunging

sti!ness coe$cient and M(a) is the non-linear sti!ness term.
The unsteady aerodynamic force (Q

h
) and moment (Qa) are expressed in terms of the

Theodorsen functions when the motion is simple harmonic as in the linear critical #utter
case [3];

Q
h
"!nob2(<aR #hK!abaK )!2no<bC(k)[<a#hR #(0)5!a)baR ],

Qa"nob2[ab(<aR #hK!abaK )!0)5<baR !b2aK /8] (3)

#2no<b2(0)5#a)C(k)[<a#hR #(0)5!a)baR ].

Here o is the air density, < is the air speed, b is the half-chord length of the airfoil, ab is the
streamwise distance of the pitch axis E from the mid-chord point, C(k) is the Theodorsen
function for unsteady aerodynamics and k is the reduced frequency.

Considering steady airforce, and introducing the non-dimensional parameters
k"m/(nob2), xa"Sa/(mb), r2a"Ia/(mb2), u2

h
"K

h
/m, u2a"Ka/Ia the equations of motion

become
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Figure 3. Phase plots depicting the chaotic motion of the airfoil for parameters Q"15)6, e"20 and d"0)07:
(a) plunging rate versus plunging displacement; (b) pitching angle versus pitching rate.
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where h"h
p
/b, Q"</(bua), t"uaq is the non-dimensional time. The following

parameters [8] are considered for the present study: k"20, a"!0)1, b"1)0 m, xa"0)25,
r2a"0)5, (u

h
/ua)2"0)2, u

h
"28)1 Hz and ua"62)8 Hz.

Upon introducing the viscous damping terms and the cubic pitching sti!ness term, the
governing equations are obtained as

hK#0)25aK#0)1hR #0)2h#0)1Qa"0, (6)

0)25hK#0)5aK#0)1aR #0)5a#ea3!0)04Qa"0, (7)

where e is the non-linear sti!ness factor, and the superscript dot denotes d/dt.
The parameters considered for the analysis are e"20, Q"15)6, d"0)07 with one

de"nite set of initial conditions: (h
0
, hR

0
, a

0
, aR

0
)"(0, 0, 0)01, 0) for which a chaotic solution

exists. Figures 3(a) and (b) depict the chaotic motion of the airfoil for the above parameters
and initial conditions in both plunge and pitch modes. The fourth order Runge}Kutta
method has been used for numerical integration with a time step of 0)1.
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4. CONTROL IMPLEMENTATION

The control signal is proportional to the di!erence between the output of the system at
the current instant and the output of the system at an earlier time. Here Q"Q

0
#F(t),

where Q
0
"15)6 (F(t)"0) is the nominal value for which the motion of the airfoil is chaotic

and F(t) is the control perturbation given by

F (t)"K(x (t!d)!x(t))"KD(t), (8)

where K is an adjustable weight of the perturbation, d is the delay time, x (t) is the current
output signal, x (t!d) is the delayed output signal and D (t)"(x (t!d)!x(t)). When
d coincides with the period of the ith unstable periodic orbit (UPO), d"¹@

1
, then the

perturbation becomes zero corresponding to this UPO. Therefore, the perturbation does
not change the form of the UPO but stabilizes it.

In this paper, for the control of chaotic motions of the airfoil, four strategies are
considered by measuring (i) plunging displacement, (ii) plunging rate, (iii) pitching angle,
and (iv) pitching rate individually in each case as the feedback signal.

The control signal is fed back to modify the system parameter Q, which is proportional to
the airspeed. The control parameters, namely, the weight K and the delay time d are chosen
appropriately to achieve the stabilization of the desired periodic motion. In experimental
situations, this is done by adjusting these parameters till the amplitude of the feedback
signal becomes extremely small which happens when the system moves along its UPO. For
a non-autonomous system the delay time can be taken as the excitation period or multiples
of it depending on the desired periodic motion. In numerical experiments, the parameter d is
determined by calculating the dispersion SD2(t)T of the perturbation, excluding the
transient process, for each value of d. The very deep minima of the resulting "gure
representing the sequence of resonance curves give the value of the delay time coinciding
with the periods of the UPO d"¹

i
. Similarly, the range of weight K is determined, for

a given value of d, by calculating the dispersion of the perturbation. The dependence of the
dispersion of perturbation on the delay time, and the dependence of the dispersion of the
perturbation on the weight K for a given value of d are shown in Figures 4(a), (b), 6(a), (b),
7(a), (b) and 9(a), (b), respectively, for the four cases considered respectively.

5. RESULTS AND DISCUSSIONS

Case I:=hen x (t)"h(t). Figure 4(a) shows the dependence of the dispersion on the delay
time. The "rst minimum corresponds to d"10)75 and the second minimum occurs at
d"21)5. Figure 4(b) shows the dependence of the dispersion on the control weight K for
two values of d. The values of K, for a particular value of d, can be chosen within the interval
where the dispersion is low.

The reference time period in all the four cases is taken as the non-dimensional time
t"10)75. The "nal periodic response of the airfoil in pitch and plunge is measured with
respect to this time period.

For K"1)05 and d"10)75, Figures 4(c)}(f ) show the chaotic motion of the airfoil
stabilized to a period-1 motion in plunge and period-2 motion in pitch with a very short
transient after the control is activated at t"2000. The control perturbation is less than
10% of the nominal airspeed value as shown in Figure 4(g). The control perturbation is very
gradual and smooth with the stabilization achieved within a very short time.

For K"1)05 and d"21)5, the motion in plunge is stabilized to a period-1 orbit and
pitch motion is stabilized to a period-2 motion as can be seen from the time histories shown



Figure 4. For case 1, when x(t)"h(t): (a) dependence of the dispersion of perturbation on delay time; (b)
dependence of the dispersion of the perturbation on K for two values of the delay time d; **, d"10)75; - - - -,
d"21)5; (c) stabilization of plunging displacement (K"1)05, d"10)75); (d) corresponding phase plot of (c) after
control transients (stabilization of period-l orbit); (e) stabilization of pitching angle (K"1)05, d"10)75); (f )
corresponding phase plot of (e) after control transients (stabilization of period-2 orbit); (g) control perturbations
(K"1)05, d"10)75, control activated at t"2000).

1042 M. RAMESH AND S. NARAYANAN
in Figures 5(a) and (c) and the phase plots shown in Figures 5(b) and 5(d). Here the
post-control transient is slightly larger than the earlier case with d"10)75. The initial
control perturbation is higher.

Case II: =hen x(t)"hR (t). There was no control up to the value of K"1)0 for both
d"10)75 and 21)5. But for a higher value of K the plunging motion was found to be



Figure 5. (a) Stabilization of plunging displacement (K"1)05, d"21)5); (b) corresponding phase plot of (a)
after control transients (stabilization of period-1 orbit); (c) time history of pitching angle before and after control
(stabilized to a period-2 oscillation); (d) corresponding phase plot of (c); (e) control perturbations (K"1)05,
d"21)5, control activated at t"2000).
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stabilized but required large control perturbations. The control is not very e!ective at lower
values of K. This may be due to the relatively high unstable values of the plunge rate.
Figures 6(c)}(f ) show the failure of control for K"0)8 with d"10)75. Figure 6(g) shows the
control perturbations applied. The control is activated at t"2000.

Case III: =hen x (t)"a (t). For K"0)3 and d"10)75, Figures 7(c)}7(f ) show the time
histories and phase plots of the plunging and pitching motion stabilized to a period-2
motion. The control perturbations required are very small as shown in Figure 7(g). The
transient time after control is longer. The interval of K over which the control is very
e!ective is very small as seen in Figure 7(b).

For K"0)3 and d"21)5, Figures 8(a)}(d) show the motion in plunging and pitching
again describing a period-2 motion. The control perturbations are very small as shown in
Figure 8(e). In this case, the control transients are shorter than when the delay time was
d"10)75.



Figure 6. For case II, when x(t)"hR (t): (a) dependence of the dispersion of perturbation on delay time; (b)
dependence of the dispersion of the perturbation on K for two values of the delay time d; **, d"10)75; - - - -,
d"21)5; (c) time history of plunging displacement before and after control (K"0)8, d"10)75); (d) corresponding
phase plot of (c) after control transients (chaotic); (e) time history of pitching angle before and after control
(K"0)8, d"10)75); (f ) corresponding phase plot of (e) after control transients (chaotic); (g) control perturbations
(K"0)8, d"10)75, control activated at t"2000).
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Case IV: =hen x (t)"aR (t). For K"0)4 and d"10)75, Figures 9(a)}(f ) show the time
histories and phase plots of the motion in plunging and pitching controlled to a period-1
and -2 cycle respectively. The control perturbations needed are very small as shown in
Figure 9(g). The control perturbation is smooth and gradual. The control transients are
shorter.



Figure 7. For case III, when x(t)"a(t): (a) dependence of the dispersion of perturbation on delay time; (b)
dependence of the dispersion of the perturbation on K for two values of the delay time d; **, d"10)75; - - - -,
d"21)5; (c) stabilization of plunging displacement (K"0)3, d"10)75); (d) corresponding phase plot of (c) after
control transients (stabilization of period-2 cycle); (e) stabilization of pitching angle (K"0)3, d"10)75); (f )
corresponding phase plot of (e) after control transients (period-2 cycle); (g) control perturbations (K"0)3,
d"10)75, control activated at t"2000).
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For K"0)4 and d"21)5, Figures 10(a)}(d) show the plunging and pitching motion
stabilized into a period-1 and -2 cycle respectively. The control perturbations required are
very small and less than 5% of the nominal value of the airspeed parameter as shown in
Figure 10(e).



Figure 8. (a) Stabilization of plunging displacement (K"0)3, d"21)5); (b) corresponding phase plot of (a) after
control transient (stabilization of period-2 orbit); (c) time history of pitching angle before and after control
(stabilized to a period-2 cycle); (d) corresponding phase plot of (c); (e) control perturbations (K"0)3, d"21)5,
control activated at t"2000).
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6. CONCLUSIONS

The chaotic motions of a two-dimensional airfoil with cubic pitching sti!ness and linear
viscous damping in incompressible #ow have been controlled numerically by using Pyragas'
method of delayed continuous feedback control. The control signal is used to perturb the
airspeed parameter for e!ecting the control. Four cases have been analyzed by which the
system's output is measured for input to the controller, namely, by measuring (i) plunging
displacement, (ii) plunging velocity, (iii) pitching angle, and (iv) pitching velocity. It is
observed that the system is stabilized to a periodic motion if the control is e!ected by either
measuring the plunging displacement, or pitching angle, or pitching velocity. The control is
not very e!ective for low values of control weight K if the control is applied by measuring
the plunging velocity. Nevertheless, the control is achieved for this case at higher values of
K, but at the cost of larger perturbations. For the (iii) and (iv) modes of control the control
perturbations required are very small (less than 5% of the nominal value of the airspeed



Figure 9. For case IV, when x (t)"aR (t): (a) dependence of the dispersion of perturbation on delay time; (b)
dependence of the dispersion of the perturbation on K for two values of the delay time d; **, d"10)75; - - - -,
d"21)5. (c) stabilization of plunging displacement (K"0)4, d"10)75); (d) corresponding phase plot of (c) after
control transients (stabilization of period-1 orbit); (e) stabilization of pitching angle (K"0)4, d"10)75); (f )
corresponding phase plot of (e) after control transients (stabilization of period-2 orbit); (g) control perturbations
(K"0)4, d"10)75, control activated at t"2000).
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parameter). In (iii), the interval of K is very narrow for stabilization. The feedback control
signal derived from the measurement of the pitching variables was found to be more
e!ective in controlling the chaotic motion of the airfoil. From this analysis, it can be
concluded that a higher-degree-of-freedom system can be controlled by using the
delayed-feedback control method. For more e!ective control in all the modes (i)}(iv),



Figure 10. (a) Stabilization of plunging displacement (K"0)4, d"21)5); (b) corresponding phase plot of (a)
after control transient (stabilization of period-1 orbit); (c) time history of pitching angle before and after control
(stabilization of period-2 orbit); (d) corresponding phase plot of (c); (e) control perturbations (K"0)4, d"21)5,
control activated at t"2000).
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a weighted sum of feedback control signal derived from plunging displacement, plunging
velocity, pitching angle and pitching velocity could be attempted in future research.
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